Physical Chemistry: Review Topics

Basic differentiation and integration Functions of many variables Partial differentiation; total derivative; basic relations involving partial derivatives

I. THERMODYNAMICS

Ideal gas laws

pV = nRT

U=cNRT

Van der Waals equation

Molecular forces

Molecular size

Critical point

First Law of Thermodynamics

Conservation of energy: dU = dQ + dW

Work = (force) x (distance)

dW = -pdV; p-V diagram and work

dU = dQ + dW = dQ - pdV

Work by an ideal gas in an isothermal expansion

Specific heats: C_p and C_v

 $C_p - C_v = R$

Adiabatic process: dQ=0

for an ideal gas $pV\gamma = constant$. $\gamma = (C_p/C_v)$

Thermochemistry:

Enthalpy $\dot{H} = U + pV$

H=H(p,T,N)

Derivatives of enthalpy: $(\partial H/\partial p)_{T,N} = V$, ... etc.

Enthalpy or heat vaporization

Enthalpy or heat of fusion

Enthalpy of formation

Enthalpy or heat of reaction; change with T and p.

Bond enthalpies

• Second Law of Thermodynamics

Carnot's theorem for a reversible heat engine

Efficiency of a reversible heat engine

Definition of entropy in a reversible process: dS=dQ/T

The Second Law

Entropy is a state function: S=S(U,V,N) or S=S(T,V,N)

Entropy changes in phase changes: $\Delta S = \Delta H/T$

• Helmholtz free energy: A = U-TS

A=A(T,V,N)

At constant V and T, A --> A_{min} as the system approaches

equilibrium

Derivatives of A: $(\partial A/\partial T)_{v,N} = -S$ etc.

At constant T: $\Delta A = \Delta U - T\Delta S$...etc.

• Gibbs Free energy: G = U - TS + pV = H - TS

G=G(T,p,N)

At constant T and p, $G \longrightarrow G_{min}$ as the system approaches

equilibrium

Derivatives of G: $(\partial G/\partial T)_{p,N} = -S$ etc.

At constant T: $\Delta G = \Delta H - T\Delta S$...etc.

Concept of chemical potential: µ

 $dU {=} TdS {-} pdV {+} Nd\mu$

Relation between chemical potentials at equilibrium

Expression for chemical potential: $\mu(p,T)=\mu(p_0,T_0)+RT$ ln a

a= activity

• General Thermodynamic Relations

U=U(S,V,N)

 $U {=} TS {-} pV {+} \Sigma \; \mu_k N_k$

 $G=\Sigma \mu_k N_k$; $(\partial G/\partial N)_{p,T} = \mu$

Gibbs-Duhem equation: SdT-Vdp+ Σ N_kd μ _k=0

Helmholtz equation

Gibbs-Helmholtz equation

Maxwell relations

• Phase Equilibrium

Phase diagram; critical point; triple point

At equilibrium, p,T and μ of the phases are equal

Clapeyron equation

Clausius-Clapeyron equation

Gibbs phase rule

Solutions

Raoult's law

Henry's law

Boiling point elevation

Freezing point depression

Osmosis

• Chemical equilibrium

Relation between chemical potentials at equilibrium.

The law of mass action.

Equilibrium constants K_p and K_c .

 ΔG of formation. Calculating ΔG of reactions from ΔG 's of formation

Relation between ΔG and equilibrium constant

Variation of K with temperature (Van't Hoff equation)

• Electrochemical equilibrium

Electrical potential

Electrochemical cells

Electrochemical potential

Nernst equation

Activities of electrolytes; activity coefficients

Ionic strength; Debey-Huckel equation for activity

Standard Electrode potentials

• Boltzmann principle: N(E) = Const. Exp(-E/kT)

Relative occupation numbers

II. KINETICS AND DYNAMICS

Reaction rates

Rate laws: First order, second order etc. Experimental determination of rate equation Principle of detailed balance and equilibrium Variation of rates with temperature; Arrhenius law; activation energy

• Kinetic theory

Boltzmann principle
Maxwell distribution of velocities
Average speed; most probable speed
Number of collisions per second
Transition-state theory of reactions
Thermodynamics of transition-state theory

III QUANTUM THEORY

• Basic Quantum Theory
Wave nature of particles
Particle nature of light

• Schrodinger equation:

Operators and wave functions Eigenvalues and eigenfunctions Probability ditribution

•Particle in a box

Eigenvalues Eigenfunctions

• Simple harmonic oscillator

Eigenvalues Eigenfunctions

• Hydrogen atom

Eigenvalues
Eigenfunctions (s,p, d .. orbitals)
Lyman, Balmer and Paschen series
Electron spin
Pauli exclusion principle

• Quantization of angular momentum Angular momentum operator

Rigid rotor:

Eigenvalue. Eigenfunctions.

- Molecular Orbitals and symmetry
- Rotational and vibrational spectroscopy
- Magnetic resonance spectroscopy EPR NMR