To prepare for the organic qualifier exam, we suggest that you use the ACS publication, "Organic Chemistry Official Study Guide" which can be obtained at the following web suite:

http://www.uwm.edu/Dept/chemexams/MATERIALS/indexOrh.html

ORGANIC QUALIFIER

Below are listed the more important topics which you will need to review for the organic qualifier.

STRUCTURE

1) Bonding

Lewis strucutres

Molecular Orbitals, sp³, sp², sp Hybridization

Resonance Arguments

Effect of electronegativity-inductive effects

2) Stereochemistry

3-D representations of organic molecules

structural isomers

geometrical isomers (cis/trans, E/Z)

stereoisomers

R/S configuration enantiomers diastereomers

Nomenclature

IUPAC system

Common trivial names

REACTIONS

3) Acid/Base reactions

Bronsted-Lowry Acid and Bases

Lewis Acids and bases

pKa

Recognition of whether a molecule is acid or base (and

relative strength)

Resonance arguments to determine acid/base strengths

4) Nucleophilic Substitution

Recognition of Typical Nucleophiles

SN1 verus SN2 stereochemical effects

kinetic effects

Potential side reaction (e.g. carbocation rearrangement)
Use of ROH instead of R-Cl as substrate (if the OH is

suitably activated)

Regiochemistry-Saytseff vs Hoffman elimination

5) Electrophilic Addition to Alkenes

Recognition of typical electrophiles
Standard mechanism-Markovnikov Addn.
Bromination-Bromonium ion-anti addn.
Carbocation rearrangements
Stability of carbocations
Hydrogenation-syn addition
Permanganate oxidation syn addition
Formation of oxiranes
Hydroboration, syn addn. anti-Markovnikov
Extension of reactions to alkynes
Extension of reactions to dienes

6) Oxidation/Reductions

1º Alcohols to aldehyde to carboxylic acid
2º Alcohols to ketones
typical oxidants
Reductions - hydride reducing agents
- hydrogenation

7) Electrophilic & Nucleophilic Substitution to Aromatic Compounds

Stability of benzene-resonance and molecular orbital explanation
General mechanism - recognition of typical electrophiles
Substituent effects

8) Aldehydes and Ketones

Nucleophilic attack on carbonyl

a. Simple addition

cyanohydrin formation Grignard reaction Hydride reduction

- b. Addition followed by further reaction
 Formation of Imines and Related Compounds
 Acetals
 Reductive Amination etc.
- 9) Carboxylic Acids and their Derivatives

General Chemistry - nucleophilic substitution acid chlorides, anhydrides, esters, acids and amides and the reactions for their interconversions

10) Reaction of Enolates with carbonyls

Stability of Enolates
Aldol condensation
Claisen and Dieckmann condensation
Reaction with alpha, beta-unsaturated
carbonyl compounds
Phosphorus and sulfur stabilized anions

11) Identification of organic compounds

theory and utilization of IR theory and utilization of proton NMR

12) Concerted Reactions

Regio - and Stereochemistry of Diels-Alder Reactions.